Master statistical calculations in Microsoft Excel with our comprehensive guide, formulas, and free templates for the 68-95-99.7 rule
Interactive Excel simulator to practice empirical rule calculations with real-time results
A | B | C | D | |
---|---|---|---|---|
1 | Parameter | Value | Formula | Result |
2 | Mean (μ) | B2 | 100 | |
3 | Std Dev (σ) | B3 | 15 | |
4 | 68% Lower | 85 | =B2-B3 | μ - σ |
5 | 68% Upper | 115 | =B2+B3 | μ + σ |
6 | 95% Lower | 70 | =B2-2*B3 | μ - 2σ |
7 | 95% Upper | 130 | =B2+2*B3 | μ + 2σ |
8 | 99.7% Lower | 55 | =B2-3*B3 | μ - 3σ |
9 | 99.7% Upper | 145 | =B2+3*B3 | μ + 3σ |
Enter your dataset in Excel column A (A1:A100 for example)
Mean
=AVERAGE(A:A)
Standard Deviation
=STDEV(A:A)
68% Lower Bound
=C1-C2
68% Upper Bound
=C1+C2
Verify your results by counting actual data points within each range:
This should be approximately 68% for normally distributed data
Function | Purpose | Syntax | Example |
---|---|---|---|
AVERAGE | Calculate mean | AVERAGE(range) | =AVERAGE(A1:A100) |
STDEV | Sample standard deviation | STDEV(range) | =STDEV(A1:A100) |
STDEV.P | Population standard deviation | STDEV.P(range) | =STDEV.P(A1:A100) |
NORM.DIST | Normal distribution probability | NORM.DIST(x,mean,std,TRUE) | =NORM.DIST(85,80,10,TRUE) |
NORM.INV | Inverse normal distribution | NORM.INV(prob,mean,std) | =NORM.INV(0.68,80,10) |
COUNTIFS | Count with multiple criteria | COUNTIFS(range,criteria1,range,criteria2) | =COUNTIFS(A:A,">=70",A:A,"<=90") |